Bearing fault diagnosis of a wind turbine based on variational mode decomposition and permutation entropy

Author:

An Xueli1,Pan Luoping1

Affiliation:

1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

Variational mode decomposition is a new signal decomposition method, which can process non-linear and non-stationary signals. It can overcome the problems of mode mixing and compensate for the shortcomings in empirical mode decomposition. Permutation entropy is a method which can detect the randomness and kinetic mutation behavior of a time series. It can be considered for use in fault diagnosis. The complexity of wind power generation systems means that the randomness and kinetic mutation behavior of their vibration signals are displayed at different scales. Multi-scale permutation entropy analysis is therefore needed for such vibration signals. This research investigated a method based on variational mode decomposition and permutation entropy for the fault diagnosis of a wind turbine roller bearing. Variational mode decomposition was adopted to decompose the bearing vibration signal into its constituent components. The components containing key fault information were selected for the extraction of their permutation entropy. This entropy was used as a bearing fault characteristic value. The nearest neighbor algorithm was employed as a classifier to identify faults in a roller bearing. The experimental data showed that the proposed method can be applied to wind turbine roller bearing fault diagnosis.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3