Multiple Enhanced Sparse Representation via IACMDSR Model for Bearing Compound Fault Diagnosis

Author:

Zhang Long,Zhao Lijuan,Wang Chaobing,Xiao Qian,Liu Haoyang,Zhang Hao,Hu Yanqing

Abstract

For the sake of addressing the issue of extracting multiple features embedded in a noise-heavy vibration signal for bearing compound fault diagnosis, a novel model based on improved adaptive chirp mode decomposition (IACMD) and sparse representation, namely IACMDSR, is developed in this paper. Firstly, the IACMD is employed to simultaneously separate the distinct fault types and extract multiple resonance frequencies induced by them. Next, an adaptive bilateral wavelet hyper-dictionary that digs deeper into the periodicity and waveform characteristics exhibited by the real fault impulse response is constructed to identify and reconstruct each type of fault-induced feature with the help of the orthogonal matching pursuit (OMP) algorithm. Finally, the fault characteristic frequency can be detected via an envelope demodulation analysis of the reconstructed signal. A simulation and two sets of experimental results confirm that the developed IACMDSR model is a powerful and versatile tool and consistently outperforms the leading MCKDSR and MCKDMWF models. Furthermore, the developed model has satisfactory capability in practical applications because the IACMD has no requirement for the input number of the signal components and the adaptive bilateral wavelet is powerfully matched to the real fault-induced impulse response.

Funder

National Science Foundation of China

Natural Science Foundation of Jiangxi Province

Jiangxi Province Graduate Student Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3