Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning

Author:

Xu Gaowei,Liu Min,Jiang Zhuofu,Söffker Dirk,Shen WeimingORCID

Abstract

Recently, research on data-driven bearing fault diagnosis methods has attracted increasing attention due to the availability of massive condition monitoring data. However, most existing methods still have difficulties in learning representative features from the raw data. In addition, they assume that the feature distribution of training data in source domain is the same as that of testing data in target domain, which is invalid in many real-world bearing fault diagnosis problems. Since deep learning has the automatic feature extraction ability and ensemble learning can improve the accuracy and generalization performance of classifiers, this paper proposes a novel bearing fault diagnosis method based on deep convolutional neural network (CNN) and random forest (RF) ensemble learning. Firstly, time domain vibration signals are converted into two dimensional (2D) gray-scale images containing abundant fault information by continuous wavelet transform (CWT). Secondly, a CNN model based on LeNet-5 is built to automatically extract multi-level features that are sensitive to the detection of faults from the images. Finally, the multi-level features containing both local and global information are utilized to diagnose bearing faults by the ensemble of multiple RF classifiers. In particular, low-level features containing local characteristics and accurate details in the hidden layers are combined to improve the diagnostic performance. The effectiveness of the proposed method is validated by two sets of bearing data collected from reliance electric motor and rolling mill, respectively. The experimental results indicate that the proposed method achieves high accuracy in bearing fault diagnosis under complex operational conditions and is superior to traditional methods and standard deep learning methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3