Affiliation:
1. School of Electric Power, Inner Mongolia University of Technology, China
2. Faculty of Information Technology, Beijing University of Technology, China
Abstract
The rolling element bearings used in rotating machinery generally include multiple coexisting defects. However, individual defect–induced signals of bearings simultaneously arising from multiple defects are difficult to extract from measured vibration signals because the impulse-like fault signals are very weak, and the vibration signal is commonly affected by the transmission path and various sources of interference. This issue is addressed in this study by proposing a new compound fault feature extraction scheme. Vibration signals are first preprocessed using resonance-based signal sparse decomposition to obtain the low-resonance component of the signal, which contains the information related to the transient fault–induced impulse signals, and reduce the interference of discrete harmonic signal components and noise. The objective used for adaptively selecting the optimal resonance-based signal sparse decomposition parameters adopts the ratio of permutation entropy to the frequency domain kurtosis, as a new comprehensive index, and the optimization is conducted using the cuckoo search algorithm. Subsequently, we apply multipoint sparsity to the low-resonance component to automatically determine the possible number of impulse signals and their periods according to the peak multipoint sparsity values. This enables the targeted extraction and isolation of fault-induced impulse signal features by multipoint optimal minimum entropy deconvolution adjustment. Finally, the envelope spectrum of the filtered signal is used to identify the individual faults. The effectiveness of the proposed scheme is verified by its application to both simulated and experimental compound bearing fault vibration signals with strong interference, and its advantages are confirmed by comparisons of the results with those of an existing state-of-the-art method.
Funder
Natural Science Foundation of Inner Mongolia
National Natural Science Foundation of China
Inner Mongolia Autonomous Region Science and Technology Project
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献