A new structuring element for multi-scale morphology analysis and its application in rolling element bearing fault diagnosis

Author:

Chen Qiong1,Chen Zhaowen1,Sun Wei1,Yang Guoan2,Palazoglu Ahmet3,Ren Zhongqi1

Affiliation:

1. College of Chemical Engineering, Beijing University of Chemical Technology, China

2. Diagnosis and Self-Recovery Engineering Research Center, Beijing University of Chemical Technology, Beijing, China

3. Department of Chemical Engineering and Materials Science, University of California, USA

Abstract

The condition monitoring and fault diagnosis of rolling element bearings play an important role in the safe and reliable operation of rotating machinery. Feature extraction based on vibration signals is an effective means to identify the operating condition of rolling element bearings. Methods based on multi-scale mathematical morphology (MM) have recently been developed to extract features from one-dimensional signals. In this paper, a new double-dot structuring element (SE) is constructed for multi-scale MM. A pattern spectrum, obtained from the multi-scale MM, is used as a feature extraction index. A correlation analysis gives the final identification result by utilizing information over a whole pattern spectrum. Compared with the most commonly used flat SE, the double-dot SE can extract more features of original signals at different scales. Vibration signals, measured from defective bearings with outer race faults, inner race faults and ball faults, are used to evaluate the fault detection ability of the proposed SE and bearing fault diagnosis method. Results show that faults at different levels can be identified, including ball fault; and the location of outer race fault can also be differentiated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3