Activity and Stability of Trypsin Immobilized onto Chitosan Magnetic Nanoparticles

Author:

Sun Jun1ORCID,Xu Bin1,Shi Yu1,Yang Lin1,Ma Hai-le1ORCID

Affiliation:

1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Abstract

The aim of this study was to develop a thermally and operationally stable trypsin through covalent immobilization onto chitosan magnetic nanoparticles (Fe3O4 @CTS). The successful preparation of the Fe3O4 @CTS nanoparticles was verified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), which indicated that the prepared Fe3O4 @CTS nanoparticles have superparamagnetic properties, with an average size of approximately 17 nm. Then, trypsin was covalently immobilized onto the Fe3O4 @CTS nanoparticles at a high loading capacity (149.25 mg/g). The FTIR data demonstrated that the trypsin had undergone a conformational change compared with free trypsin, and the Michaelis constant (Km) and the maximum hydrolysis reaction rate (Vmax) showed that the trypsin immobilized on the Fe3O4 @CTS had a lower affinity for BAEE and lower activity compared with free trypsin. However, the immobilized trypsin showed higher activity than free trypsin at pH 6.0 and in alkaline conditions and retained more than 84% of its initial activity at 60°C after 8 h incubation. Its excellent performance across a broader pH range and high thermal stability, as well as its effective hydrolysis of bovine serum albumin (BSA) and its reusability, make it more attractive than free trypsin for application in protein digestion.

Funder

Youth Nature Science Foundation of Jiangsu

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3