Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

Author:

Tang Jianshi1ORCID,Wang Chiu-Yen2,Xiu Faxian13,Zhou Yi1,Chen Lih-Juann2,Wang Kang L.1

Affiliation:

1. Device Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA

2. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

3. Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50014, USA

Abstract

We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studied the effect of oxide confinement during the formation of nickel germanides in a Ge nanowire. In contrast to the formation of Ni2Ge/Ge/Ni2Ge nanowire heterostructures, a segment of high-quality epitaxial NiGe was formed between Ni2Ge with the confinement of Al2O3during annealing. A twisted epitaxial growth mode was observed in both two Ge nanowire heterostructures to accommodate the large lattice mismatch in the NixGe/Ge interface. Moreover, we have demonstrated field-effect transistors using the nickel germanide regions as source/drain contacts to the Ge nanowire channel. Our Ge nanowire transistors have shown a high-performancep-type behavior with a high on/off ratio of 105and a field-effect hole mobility of 210 cm2/Vs, which showed a significant improvement compared with that from unreacted Ge nanowire transistors.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3