Gas-Permeable Microimprint Template Derived from Cellulose Nanofiber Derivatives for Mechanical Properties

Author:

Murayama Seigo1ORCID,Motono Ikuo2,Mizui Kento2,Kondoh Kenji1,Hanabata Makoto2,Takei Satoshi2

Affiliation:

1. Toyama Industrial Technology Research and Development Center, Takaoka, Toyama 933-0981, Japan

2. Prefectural University, Imizu, Toyama 939-0398, Japan

Abstract

A gas-permeable template has lower mechanical properties compared to non-gas-permeable metal templates. Therefore, it is difficult to mass-produce by increasing the area of the gas-permeable template. In this study, we have developed a new gas-permeable template with cellulose nanofiber (CNF) derivatives added to improve the mechanical properties of gas-permeable templates. The reinforcing effect by the CNF derivative added was investigated by a tensile test. As a result, it was shown that Young’s modulus was increased about 2 to 3 times by the addition of 2-5 wt% CNF derivative. Also, it was confirmed by confocal microscopic images that transferability and gas permeability of the gas-permeable template were not lost even when the CNF derivative was added.

Funder

Advanced Machining Technology and Development Association; and the Mazak Foundation

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3