Reinforcement Learning-Based Genetic Algorithm in Optimizing Multidimensional Data Discretization Scheme

Author:

Chen Qiong12,Huang Mengxing12ORCID,Xu Qiannan3,Wang Hao4,Wang Jinghui12

Affiliation:

1. State Key Laboratory Marine Resource Utilization in South China Sea, Haikou 570228, China

2. College of Information Science and Technology, Hainan University, Haikou 570228, China

3. Dept. of Obstetrics and Gynecology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China

4. Big Data Lab, Department of Computer Science, Norwegian University of Science and Technology, 2815 Gjøvik, Norway

Abstract

Feature discretization can reduce the complexity of data and improve the efficiency of data mining and machine learning. However, in the process of multidimensional data discretization, limited by the complex correlation among features and the performance bottleneck of traditional discretization criteria, the schemes obtained by most algorithms are not optimal in specific application scenarios and can even fail to meet the accuracy requirements of the system. Although some swarm intelligence algorithms can achieve better results, it is difficult to formulate appropriate strategies without prior knowledge, which will make the search in multidimensional space inefficient, consume many computing resources, and easily fall into local optima. To solve these problems, this paper proposes a genetic algorithm based on reinforcement learning to optimize the discretization scheme of multidimensional data. We use rough sets to construct the individual fitness function, and we design the control function to dynamically adjust population diversity. In addition, we introduce a reinforcement learning mechanism to crossover and mutation to determine the crossover fragments and mutation points of the discretization scheme to be optimized. We conduct simulation experiments on Landsat 8 and Gaofen-2 images, and we compare our method to the traditional genetic algorithm and state-of-the-art discretization methods. Experimental results show that the proposed optimization method can further reduce the number of intervals and simplify the multidimensional dataset without decreasing the data consistency and classification accuracy of discretization.

Funder

Natural Science Foundation of Hainan Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3