High Utility Itemset Extraction using PSO with Online Control Parameter Calibration

Author:

K LOGESWARAN,S SURESH,S SAVITHA,S ANANDAMURUGAN

Abstract

This study investigates the use of evolutionary computation for mining high-value patterns from benchmark datasets. The approach employs a fitness function to assess the usefulness of each pattern. However, the effectiveness of evolutionary algorithms heavily relies on the chosen strategy parameters during execution. Conventional methods set these parameters arbitrarily, often leading to suboptimal solutions. To address this limitation, the research proposes a method for dynamically adjusting strategy parameters using temporal difference approaches, a machine learning technique called Reinforcement Learning (RL). Specifically, the proposed IPSO RLON algorithm utilizes SARSA learning to intelligently adapt the Crossover Rate and Mutation Rate within the Practical Swarm Optimization Algorithm. This allows IPSO RLON to effectively mine high-utility itemsets from the data.The key benefit of IPSO RLON lies in its adaptive control parameters. This enables it to discover optimal high-utility itemsets when applied to various benchmark datasets. To assess its performance, IPSO RLON is compared to existing approaches like HUPEUMU-GRAM, HUIM-BPSO, IGA RLOFF, and IPSO RLOFF using metrics like execution time, convergence speed, and the percentage of high-utility itemsets mined. From the evaluation it is observed that the proposed IPSO RLON perfroms better than the other methodology.

Publisher

Perpetual Innovation Media Pvt. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3