Affiliation:
1. State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Mechanical Engineering and Electronic Information China University of Geosciences, Wuhan 430074, China
Abstract
With the development of computer vision technology, more and more enterprises begin to use computer vision instead of manual inspection for steel surface defect detection. However, classical image processing methods often face great difficulties when dealing with images containing noise and distortions, which leads to low computational efficiency and poor accuracy of detection. In view of the particularity of hot round steel production, a computational intelligence method is proposed in this paper. On the basis of preliminary image preprocessing, we combine the improved PCA with genetic algorithm for feature selection and then use evolutionary computing and CUDA-based parallel computing to screen out the suspected defective image of round steel surface intelligently, quickly, and accurately. This method can provide decision support for subsequent defect analysis and production process improvement.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献