Affiliation:
1. State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Flight Test Center of COMAC, Shanghai 200120, China
Abstract
A new parameter identification method under non-white noise excitation using transformer encoder and long short-term memory networks (LSTMs) is proposed in the paper. In this work, the random decrement technique (RDT) processing of the data is equivalent to eliminating the noise of the raw data. In general, the addition of the gate in LSTM allows the network to selectively store data, which avoids gradient disappearance and gradient explosion to a certain extent. It is worthwhile mentioning that the encoder can learn the essence of data, which reduces the burden for the LSTM. More specifically, establish as simple LSTM structure as possible to learn the data of this essence to achieve the best training effect. Finally, the proposed method is used for simulation and experimental verification, and the results show that the method has the advantages of high recognition accuracy, strong anti-noise ability, and fast convergence rate. Specially, the results indicated appropriate accuracy proposed by deep learning combined with traditional method for parameter identification as well as proper performance of the proposed method.
Funder
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献