Affiliation:
1. Library, People’s Public Security University of China, Beijing 100038, China
Abstract
Personalized recommendation is one of the important contents of personalized service in university libraries. Accurate and in-depth understanding of users is the premise of personalized recommendation. This paper proposes a personalized book recommendation algorithm based on deep learning models according to the characteristics and laws of user savings in university libraries. The method first uses the long short-term memory network (LSTM) to improve the deep autoencoder (DAE) so that the model can extract the temporal features of the data. Then, the Softmax function is used to obtain the book recommendation result of the current user. The proposed method is verified based on actual library lending data. The experimental results show that the proposed method has performance advantages compared with several existing recommendation methods.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献