Operational Modal Analysis for Vibration Control Following Moving Window Locality Preserving Projections for Linear Slow-Time-Varying Structures

Author:

Fu Weihua,Wang ChengORCID,Chen Jianwei

Abstract

Modal parameters can reflect the dynamic characteristics of the structure and can be used to control vibration. To identify the operational modal parameters of linear slow-time-varying structures only from non-stationary vibration response signals, a method based on moving window locality preserving projections (MWLPP) algorithm is proposed. Based on the theory of “time freeze”, the method selects a fixed length window and takes the displacement response signal in each window as a stationary random sequence. The locality preserving projections algorithm is used to identify the transient modal frequency and modal shape of the structure at this window. The low-dimensional embedding of the displacement response data set calculated by locality preserving projections (LPP) corresponds to the modal coordinate response matrix, and the transformation matrix corresponds to the modal shape matrix. The simulation results of the mass slow-time-varying three degree of freedom (DOF) and the density slow-time-varying cantilever beam show that the new method can effectively identify the modal shape and modal natural frequency of the linear slow-time-varying only from the non-stationary vibration response signal, and the performance is better than the moving window principal component analysis (MWPCA).

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3