Operational modal analysis of a multi-span skew bridge using real-time wireless sensor networks

Author:

Whelan MJ1,Gangone MV2,Janoyan KD2,Jha R3

Affiliation:

1. Department of Civil and Environmental Engineering, University of North Carolina Charlotte, Charlotte, NC, USA

2. Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA

3. Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, USA

Abstract

A large-scale field deployment of high-density, real-time wireless sensors networks for the acquisition of local acceleration measurements across a medium length, multi-span highway bridge is presented. The advantages, performance characteristics, and limitations of employing this emerging technology in favor of the traditional cable-based acquisition systems are discussed in the context of the in-service instrumentation and ambient vibration testing of a multi-span bridge. Of particular highlight in this study is the deployment of a large number of stationary rather than reference-based accelerometers to uniquely permit simultaneous acquisition of vibration measurements across the structure and thereby ensure consistent temperature, ambient vibration, and traffic loading. The deployment consisted of 30 dual-axis accelerometers installed across the girders of the bridge and interfaced with 30 wireless acquisition and transceiver nodes operating in two star topology networks. Real-time wireless acquisition at a per channel sampling rate of 128 samples per second was maintained across both networks for the specified test durations of 3 min with insignificant data loss. Output-only system identification of the structure from the experimental data is presented to provide estimates of natural frequencies, damping ratios, and operational mode shapes for 19 modes. The analysis of the structure under test provides a unique case study documenting the measured response of a multiple-span skewed bridge supported by elastomeric bearings. The feasibility of embedded wireless instrumentation for structural health monitoring of large civil constructions is concluded while highlighting relevant technological shortcomings and areas of further development required. In particular, previously undocumented obstacles relating to radio transmission of the sensor data using low-power 2.4 GHz wireless instrumentation, such as the effect of solid piers within the line-of-sight and the reflection of the radio waves on the surface of the water, are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3