A Method of Energy-Optimal Trajectory Planning for Palletizing Robot

Author:

Liu Yanjie1ORCID,Liang Le1,Han Haijun1,Zhang Shijie1

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China

Abstract

In this work, the energy-optimal trajectory planning and initial pick point searching problem for palletizing robot with high load capacity and high speed are studied, in which the pick point and place point of the robot are fixed to a desired location for each single task. These optimization problems have been transformed to ternary functional extremum problem and parameters optimal selection problem in which the performance index of the problems the rigid-flexible coupling dynamics model of the robot, and the constraint and boundary conditions of the robot are given. The fourth-order Runge-Kutta method, multiple shooting method, and traversing method are used to solve these specific mathematical problems. The effectiveness of the trajectory planning method is validated by the experimental and simulating results; thus the research work done here provides important support for subsequent palletizing robot research.

Funder

National High Technology Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Managing Energy Consumption of Linear Delta Robots Using Neural Network Models;Energies;2024-08-16

2. Multi-objective trajectory planning and implementation of a metamorphic palletizing robot;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-26

3. Compliant‐based robotic 3D bin packing with unavoidable uncertainties;IET Control Theory & Applications;2023-02-10

4. Optimal Trajectory Planning of Manipulator With Improved Firefly Algorithm;2023 2nd International Symposium on Control Engineering and Robotics (ISCER);2023-02

5. Toward Kinematic Control for Redundant Manipulators with Flexibility Optimization;2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM);2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3