Compliant‐based robotic 3D bin packing with unavoidable uncertainties

Author:

Shuai Wei1ORCID,Gao Yang2,Wu Peichen12,Cui Guowei12,Zhuang Qinghao3,Chen Rongya3,Chen Xiaoping1

Affiliation:

1. Department of Computer Science and Technology University of Science and Technology of China Hefei China

2. Institute of Intelligent Manufacturing Guangdong Key Laboratory of Modern Control Technology Guangdong Academy of Sciences Guangzhou China

3. Institute of Advanced Technology University of Science and Technology of China Hefei China

Abstract

AbstractRobotic 3D bin packing (R‐3dBPP), aiming to place deformed cases in various sizes in the container without fences, is a comprehensive application that includes perception, planning, execution, and hardware design. Traditional studies assume that the context of the real space must be accurately perceived and represented. However, disjunctions between the planner and reality are unavoidable in R‐3dBPP, especially with low‐cost sensors. As far as the author knows, there is no practical solution. In this paper, the above assumption is discarded and the typical types of uncertainties prevalent to guide the design of the algorithms are formulated. A new online bin‐packing algorithm is proposed, keeping deformed boxes stacked in close contact with each other, so that the whole pallet is kept stable by friction between the boxes and the container. In order to meet the requirement of close contact under the non‐negligible errors from sensors and planners, a compliant‐based motion planning system is introduced. It replaces the precision‐based feedback with a compliant end‐effector and accompanying motion strategies. Last but not least, a complete online bin‐packing robot system is developed and the system's performance under the influence of the uncertainties mentioned above through simulation and physical experiments is evaluated.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3