Obstacle Avoidance Path Planning for UAV Based on Improved RRT Algorithm

Author:

Yang Fan1,Fang Xi1ORCID,Gao Fei1,Zhou Xianjin1,Li Hao2,Jin Hongbin2,Song Yu1ORCID

Affiliation:

1. School of Science, Wuhan University of Technology, Wuhan 430070, China

2. People’s Liberation Army Air Force Early Warning Academy, Wuhan 430070, China

Abstract

Obstacle avoidance path planning capability, as one of the key capabilities of UAV (Unmanned Aerial Vehicle) to achieve safe autonomous flight, has always been a hot research topic in UAV research filed. As a commonly used obstacle avoidance path planning algorithm, RRT (Rapid-exploration Random Tree) algorithm can carry out obstacle avoidance path planning in real time and online. In addition, it can obtain the asymptotically optimal obstacle avoidance path on the premise of ensuring the completeness of probability. However, it has some problems, such as high randomness, slow convergence speed, long transit time, and curved flight trajectory, so that it cannot meet the flight conditions of the actual UAV. To solve these problems, the paper proposes an improved RRT algorithm. In the process of extending the random tree, ACO (ant colony optimization) is introduced to make the planning path asymptotically optimal. The optimized algorithm can set pheromones on the path obtained by RRT and select the next extension point according to the pheromone concentration. And then through a certain number of iterations, it converges to an ideal path scheme. In addition, this paper also uses MATLAB to verify the effectiveness and superiority of the algorithm: Although RRT is easy to fall into local optimization, since the optimization method in this paper can almost certainly converge to the optimal solution, when it is necessary to preplan the path before UAV takeoff, it can be used.

Funder

National Natural Science Foundation

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3