Multi-UAV Path Planning Based on Cooperative Co-Evolutionary Algorithms with Adaptive Decision Variable Selection

Author:

Meng Qicheng1,Qu Qingjun1,Chen Kai1,Yi Taihe1

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

When dealing with UAV path planning problems, evolutionary algorithms demonstrate strong flexibility and global search capabilities. However, as the number of UAVs increases, the scale of the path planning problem grows exponentially, leading to a significant rise in computational complexity. The Cooperative Co-Evolutionary Algorithm (CCEA) effectively addresses this issue through its divide-and-conquer strategy. Nonetheless, the CCEA needs to find a balance between computational efficiency and algorithmic performance while also resolving convergence difficulties arising from the increased number of decision variables. Moreover, the complex interrelationships between the decision variables of each UAV add to the challenge of selecting appropriate decision variables. To tackle this problem, we propose a novel collaborative algorithm called CCEA-ADVS. This algorithm reduces the difficulty of the problem by decomposing high-dimensional variables into sub-variables for collaborative optimization. To improve the efficiency of decision variable selection in the collaborative algorithm and to accelerate the convergence speed, an adaptive decision variable selection strategy is introduced. This strategy selects decision variables according to the order of solving single-UAV constraints and multi-UAV constraints, reducing the cost of the optimization objective. Furthermore, to improve computational efficiency, a two-stage evolutionary optimization process from coarse to fine is adopted. Specifically, the Adaptive Differential Evolution with Optional External Archive algorithm (JADE) is first used to optimize the waypoints of the UAVs to generate a basic path, and then, the Dubins algorithm is combined to optimize the trajectory, yielding the final flight path. The experimental results show that in four different scenarios involving 40 UAVs, the CCEA-ADVS algorithm significantly outperforms the Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and JADE algorithms in terms of path performance, running time, computational efficiency, and convergence speed. In addition, in large-scale experiments involving 500 UAVs, the algorithm also demonstrates good adaptability, stability, and scalability.

Funder

Hunan Provincial Department of Education Scientific Research Outstanding

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3