An Integrated Geometric Obstacle Avoidance and Genetic Algorithm TSP Model for UAV Path Planning

Author:

Debnath Dipraj12ORCID,Vanegas Fernando12ORCID,Boiteau Sebastien12,Gonzalez Felipe12ORCID

Affiliation:

1. School of Electrical Engineering and Robotics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia

2. QUT Centre of Robotics (QCR), Queensland University of Technology, Level 11, QUT S Block, Brisbane, QLD 4000, Australia

Abstract

In this paper, we propose an innovative approach for the path planning of Uninhabited Aerial Vehicles (UAVs) that combines an advanced Genetic Algorithm (GA) for optimising missions in advance and a geometrically based obstacle avoidance algorithm (QuickNav) for avoiding obstacles along the optimised path. The proposed approach addresses the key problem of determining an optimised trajectory for UAVs that covers multiple waypoints by enabling efficient obstacle avoidance, thus improving operational safety and efficiency. The study highlights the numerous challenges for UAV path planning by focusing on the importance of both global and local path planning approaches. To find the optimal routes, the GA utilises multiple methods of selection to optimise trajectories using the Cartesian Coordinate System (CCS) data transformed from a motion capture system. The QuickNav algorithm applies linear equations and geometric methods to detect obstacles, guaranteeing the safe navigation of UAVs and preventing real-time collisions. The proposed methodology has been proven useful in reducing the total distance travelled and computing times and successfully navigating UAVs across different scenarios with varying numbers of waypoints and obstacles, as demonstrated by simulations and real-world UAV flights. This comprehensive approach provides advantageous perspectives for real-world applications in a variety of operational situations and improves UAV autonomy, safety, and efficiency.

Funder

Queensland University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3