Inverse Kinematics of Concentric Tube Robots in the Presence of Environmental Constraints

Author:

Jabari Mohammad1ORCID,Zakeri Manizhe1ORCID,Janabi-Sharifi Farrokh2ORCID,Norouzi-Ghazbi Somayeh3ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2. Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada

3. Department of Biomedical Engineering, Ryerson University, Toronto, Canada

Abstract

Inverse kinematics (IK) of concentric tube continuum robots (CTRs) is associated with two main problems. First, the robot model (e.g., the relationship between the configuration space parameters and the robot end-effector) is not linear. Second, multiple solutions for the IK are available. This paper presents a general approach to solve the IK of CTRs in the presence of constrained environments. It is assumed that the distal tube of the CTR is inserted into a cavity while its proximal end is placed inside a tube resembling the vessel enabling the entry to the organ cavity. The robot-tissue interaction at the beginning of the organ-cavity imposed displacement and force constraints to the IK problem to secure a safe interaction between the robot and tissue. The IK in CTRs has been carried out by treating the problem as an optimization problem. To find the optimized IK of the CTR, the cost function is defined to be the minimization of input force into the body cavity and the occupied area by the robot shaft body. The optimization results show that CTRs can keep the safe force range in interaction with tissue for the specified trajectories of the distal tube. Various simulation scenarios are conducted to validate the approach. Using the IK obtained from the presented approach, the tracking accuracy is achieved as 0.01 mm which is acceptable for the application.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3