Optimization of Gamma Aminobutyric Acid Production Using High Pressure Processing (HPP) by Lactobacillus brevis PML1

Author:

Ghafurian Nasab Atefe1,Mortazavi Sayed Ali1,Tabatabaei Yazdi Farideh1ORCID,Sarabi Jamab Mahboobe2

Affiliation:

1. Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2. Food Biotechnology Department, Food Science and Technology Research Institute, Mashhad, Iran

Abstract

In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) ( P < 0.05 ). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.

Funder

Ferdowsi University of Mashhad

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3