Synthesis, Characterization, and Antimicrobial Studies of Novel Series of 2,4-Bis(hydrazino)-6-substituted-1,3,5-triazine and Their Schiff Base Derivatives

Author:

Al-Rasheed Hessa H.1,Sholkamy Essam N.2,Al Alshaikh Monirah1,Siddiqui Mohammed R. H.1ORCID,Al-Obaidi Ahmed S.2,El-Faham Ayman13ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt

Abstract

The present work represents the synthesis, characterization, and antimicrobial studies of novel series of 2,4-bis(hydrazino)-6-substituted-1,3,5-triazine and their Schiff base derivatives. IR, NMR (H1 and C13), elemental analysis, and LC-MS characterized the prepared compounds. The biological activity of the target products was evaluated as well. Twenty-two of the prepared compounds were selected according to their solubility in aqueous DMSO. Only eight compounds showed good activity against the selected pathogenic bacteria and did not show antagonistic effect against fungus Candida albicans. Two compounds 4k and 5g have wide-range effect presently in Gram-positive and Gram-negative bacteria while other compounds (4f, 4i, 4m, 5d, 6i, and 6h) showed specific effect against the Gram-negative or Gram-positive bacteria. The minimum inhibitory concentration (MIC, μg/mL) of 4f, 4i, 4k, and 6h compounds against Streptococcus mutans was 62.5 μg/mL, 100 μg/mL, 31.25 μg/mL, and 31.25 μg/mL, respectively. The MIC of 4m, 4k, 5d, 5g, and 6h compounds against Staphylococcus aureus was 62.5 μg/mL, 31.25 μg/mL, 31.25 μg/mL, 100 μg/mL, and 62.5 μg/mL, respectively. The MIC of 4k, 5g, and 6i compounds against Salmonella typhimurium was 31.25 μg/mL, 100 μg/mL, and 62.5 μg/mL, respectively. The MIC of 6i compound against Escherichia coli was 62.5 μg/mL.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3