Affiliation:
1. National University of Sciences and Technology, Islamabad, Pakistan
Abstract
The use of machine learning for seismic interpretation is a growing area of interest for researchers. Manual interpretation demands time and specialized effort. The use of machine learning model will expedite the process. The Convolutional Neural Networks (CNNs) are a class of deep learning algorithms used for images. In this paper, seismic facies segmentation using encoder-decoder architecture of CNNs is proposed. The proposed method filled the gap using a multimodel approach for seismic interpretation. The novelty of the model is that it is not limited to the current dataset and semantic segmentation models. The encoder-decoder architecture input and output size is the same, and it allows the labelling of each pixel of the image. Four models are trained on the open-sourced F3 block Netherlands dataset. Images of
were extracted from the data. Data augmentation is used in two of the models to increase the data size for better model learning. Results of individual models and their ensemble are compared. Ensemble is performed by taking the average of the probabilities of the classes obtained from the trained models. Ensemble gave the superior results. Seven classes are segmented with a global pixel accuracy (GPA) of 98.52%, mean class accuracy (MCA) of 96.88%, and mean intersection over union (MIoU) of 93.92%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Reference43 articles.
1. The Role of Hydrocarbons in Africa’s Energy Mix
2. Seismic facies segmentation using deep learning;D. Chevitarese;AAPG Annual and Exhibition,2018
3. Semantic segmentation of seismic images;D. Civitarese,2019
4. Deep Learning for Computer Vision: A Brief Review
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献