Wireless Interference Identification in 5G Smart Networks

Author:

Bilal Rabia1,Khan Bilal Muhammad2

Affiliation:

1. UIT University, Pakistan

2. National University of Sciences and Technology, Islamabad, Pakistan

Abstract

In the rapidly evolving landscape of 5G communication, the identification and mitigation of wireless interference is paramount to maintaining the integrity and efficiency of data transmission. This chapter delves into the intricate process of wireless interference identification, emphasizing its critical role in the predictive analysis of modulation classification and the implementation of adaptive modulators. The discussion begins with a comprehensive overview of 5G architecture, and the inherent challenges posed by dense signal environments. Key techniques for interference identification are explored, including advanced machine learning algorithms and spectrum sensing methods that enable real-time detection and characterization of interference sources. The chapter then examines how these identification techniques inform the predictive analysis of modulation classification. By accurately predicting the modulation scheme of incoming signals, the system can adaptively adjust its modulator settings, thereby optimizing performance and minimizing error rates.

Publisher

IGI Global

Reference26 articles.

1. Seismic Facies Segmentation Using Ensemble of Convolutional Neural Networks

2. FCC. (2015). Amendment of the commission’s rules with regard to commercial operations in the 3550-3650 MHz band. FCC.

3. BTH. (2012a). Analysis of OSTBC in Cooperative Cognitive Radio Networks using 2-hop DF Relaying Protocol - Arkiv EX. Blekinge Tekniska Högskola. http://www.bth.se/fou/cuppsats.nsf/6753b78eb2944e0ac1256608004f0535/0ae924c26658a76dc12578bf0078935b?OpenDocument

4. BTH. (2012b). Applying OSTBC in Cooperative Cognitive Radio Networks. Blekinge Tekniska Högskola. http://www.bth.se/fou/cuppsats.nsf/6753b78eb2944e0ac1256608004f0535/4830a668eb9bd48cc1257735004a7535?OpenDocument

5. Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3