Resolution enhancement for a seismic velocity model using machine learning

Author:

Kim Sujeong1,Cho Yongchae2,Jun Hyunggu1ORCID

Affiliation:

1. Department of Geology, Kyungpook National University , 80 Daehak-ro, Sangyeok-dong, Buk-gu, Daegu 41566 , Republic of Korea

2. Department of Energy Systems Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826 , Republic of Korea

Abstract

SUMMARY To address complex subsurface structures, a high-resolution velocity model must be constructed. Conventionally, algorithms such as full waveform inversion (FWI) have been used to derive accurate high-resolution velocity structures, but obstacles such as high computational costs remain. Therefore, we propose a high-resolution U-NET (HR U-NET) machine learning model to derive a high-resolution velocity model from a low-resolution velocity model. The low-resolution velocity model and migration data obtained through the corresponding velocity information were used as input data for training. In addition, we tried to improve the accuracy of the high-resolution velocity model by using prior information containing accurate velocity values. A prior model generated through geophysical logging data and a weight model including the reliability information of the prior model were also utilized. Therefore, the HR U-NET model was trained using the low-resolution velocity model, the migration data, the prior model and the weight model. Numerical experiments conducted using synthetic and field data demonstrated that the proposed model could accurately construct a high-resolution velocity model and verified that the prior model and weight model play important roles in the training process. Additionally, we confirmed that the proposed method derived almost similar results using only 8.2 percent of the computational cost of the conventional inversion method. In other words, there is an advantage that it is possible to predict high-resolution velocity information more efficiently in terms of computational cost.

Funder

Korea Institute of Energy Technology Evaluation and Planning

MOTIE

Ministry of Education

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3