A Genetic Algorithm Approach for Expedited Crossing of Emergency Vehicles in Connected and Autonomous Intersection Traffic

Author:

Lu Qiang1ORCID,Kim Kyoung-Dae2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Denver, Denver, CO 80210, USA

2. Department of Information and Communication Engineering, DGIST, Daegu 42988, Republic of Korea

Abstract

This paper proposes an intersection control algorithm which aims to determine an efficient vehicle-passing sequence that allows the emergency vehicle to cross an intersection as soon as possible while the travel times of other vehicles are minimally affected. When there are no emergency vehicles within the intersection area, the vehicles are controlled by the DICA that we proposed in our earlier work. When there are emergency vehicles entering the communication range, we prioritize emergency vehicles through optimal ordering of vehicles. Since the number of possible vehicle-passing sequences increases rapidly with the number of vehicles, finding an efficient sequence of vehicles in a short time is the main challenge of the study. A genetic algorithm is proposed to solve the optimization problem which finds the optimal vehicle sequence that gives the emergency vehicles the highest priority. The efficiency of the proposed approach for expedited crossing of emergency vehicles is validated through comparisons with DICA and a reactive traffic light algorithm through extensive simulations. The results show that the proposed genetic algorithm is able to decrease the travel times of emergency vehicles significantly in light and medium traffic volumes without causing any noticeable performance degradation of normal vehicles.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3