Trajectory Simulation of Emergency Vehicles and Interactions with Surrounding Traffic

Author:

Cortés Cristián E.1ORCID,Stefoni Bruno2ORCID

Affiliation:

1. Department of Civil Engineering, Universidad de Chile and Instituto Sistemas Complejos de Ingeniería (ISCI), Blanco Encalada 2002, Santiago, RM 8370449, Chile

2. Department of Civil Engineering, Universidad de Chile, Blanco Encalada 2002, Santiago, RM 8370449, Chile

Abstract

Emergency services play an important role in the life of a city and are subject to constant public scrutiny. The efficient dispatch of emergency vehicles (EMVs) requires realistic shortest-path algorithms involving the movement of EMVs within an urban network under emergency conditions. Trip-time estimates used in shortest-path algorithms would be much more precise if it were possible to model more realistically the interactions between EMVs and surrounding traffic, as well as the reactions of other vehicles in the presence of an EMV. Therefore, EMV trajectories should be studied at the microscopic level to accurately model the impact of EMV travel along a path shared with other vehicles. In this research, we develop three models to incorporate specific non-EMV reactions associated with changing lanes, mounting the sidewalk, and approaching an intersection, plus two algorithms to actuate traffic lights at signalized intersections. These models and algorithms were coded in commercial microscopic traffic simulation software through the implementation of an application programming interface (API) designed to overcome the limitations of the software to realistically simulate disturbed traffic conditions and anomalous nonemergency vehicle driver behaviour observed in the presence of an EMV. Basic information about these real-world effects was gleaned from video footage recorded in Santiago, Chile, by traffic cameras, fire truck-mounted cameras, and truck-originated GPS pulses. To validate the design, a real EMV trip captured by the footage was simulated by the API. The simulation considerably reduced the degree of error in delineating the path followed by the EMV compared to the default simulations generated by most commercially available software, thereby demonstrating that the API can provide highly accurate estimates of EMV trip times in an emergency context.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3