Rolling Bearing Fault Diagnosis Based on Stacked Autoencoder Network with Dynamic Learning Rate

Author:

Pan Hong1ORCID,Tang Wei2,Xu Jin-Jun1,Binama Maxime2

Affiliation:

1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 211100, China

Abstract

Fault diagnosis is of great significance for ensuring the safety and reliable operation of rolling bearing in industries. Stack autoencoder (SAE) networks have been widely applied in this field. However, the model parameters such as learning rate are always fixed, which have an adverse effect on the convergence speed and accuracy of fault classification. Thus, this paper proposes a dynamic learning rate adjustment approach for the stacked autoencoder network. First, the input data is normalized and enhanced. Second, the structure of the SAE network is selected. According to the positive and negative value of the training error gradient, a learning rate reducing strategy is designed in order to be consistent with the current operation of the network. Finally, the fault diagnosis models with different learning rate adjustment are conducted in order to validate the better performance of the proposed approach. In addition, the influence of quantities of labeled sample data on the process of backpropagation is analyzed. The results show that the proposed method can effectively increase the convergence speed and improve classification accuracy. Moreover, it can reduce the labeled sample size and make the network more stable under the same classification accuracy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3