Affiliation:
1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 211100, China
Abstract
Fault diagnosis is of great significance for ensuring the safety and reliable operation of rolling bearing in industries. Stack autoencoder (SAE) networks have been widely applied in this field. However, the model parameters such as learning rate are always fixed, which have an adverse effect on the convergence speed and accuracy of fault classification. Thus, this paper proposes a dynamic learning rate adjustment approach for the stacked autoencoder network. First, the input data is normalized and enhanced. Second, the structure of the SAE network is selected. According to the positive and negative value of the training error gradient, a learning rate reducing strategy is designed in order to be consistent with the current operation of the network. Finally, the fault diagnosis models with different learning rate adjustment are conducted in order to validate the better performance of the proposed approach. In addition, the influence of quantities of labeled sample data on the process of backpropagation is analyzed. The results show that the proposed method can effectively increase the convergence speed and improve classification accuracy. Moreover, it can reduce the labeled sample size and make the network more stable under the same classification accuracy.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献