Fault diagnosis of motor bearing based on deep learning

Author:

Jian Yifan1ORCID,Qing Xianguo1,He Liang1,Zhao Yang1,Qi Xiao2,Du Ming3

Affiliation:

1. Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, China

2. Shanghai Energy Internet Research Institute Co. Ltd., Shanghai, China

3. State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University, Beijing, China

Abstract

The effective fault diagnosis of the motor bearings not only can ensure the smooth and efficient operation of equipment but also can detect and eliminate the running fault in time to prevent major accidents. Based on deep learning algorithm, this article constructs a stacked auto-encoder network. The input data are compressed and reduced by introducing sparsity constraint, so that the network can accurately extract the fault characteristics of the input data, and the fault recognition ability of the network can be improved by introducing random noise. The simulation result shows that the stacked auto-encoder network can not only overcome the shortcomings of traditional fault diagnosis method that requires to distinguish fault samples manually and needs a large number of prior knowledge but also realize the self-learning of fault signal feature. The accuracy rate of fault identification reaches 98%, 94%, 96%, and 95.5% in four different working conditions. What’s more, the network can exhibit strong robustness under different working conditions. Finally, the new research ideas of fault diagnosis in thermal power plant are put forward by copying the idea of fault diagnosis of motor bearing.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3