A graph neural network-based bearing fault detection method

Author:

Xiao Lu,Yang Xiaoxin,Yang Xiaodong

Abstract

AbstractBearings are very important components in mechanical equipment, and detecting bearing failures helps ensure healthy operation of mechanical equipment and can prevent catastrophic accidents. Most of the well-established detection methods do not take into account the correlation between signals and are difficult to accurately identify those fault samples that have a low degree of failure. To address this problem, we propose a graph neural network-based bearing fault detection (GNNBFD) method. The method first constructs a graph using the similarity between samples; secondly the constructed graph is fed into a graph neural network (GNN) for feature mapping, and the samples outputted by the GNN network fuse the feature information of their neighbors, which is beneficial to the downstream detection task; then the samples mapped by the GNN network are fed into base detector for fault detection; finally, the results determined by the integrated base detector algorithm are determined, and the top n samples with the highest outlier scores are the faulty samples. The experimental results with five state-of-the-art algorithms on publicly available datasets show that the GNNBFD algorithm improves the AUC by 6.4% compared to the next best algorithm, proving that the GNNBFD algorithm is effective and feasible.

Funder

National Natural Science Foundation of China

Key R&D of intelligent manufacturing technology and its application in Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3