Abstract
Multi-sensor data fusion is a feasible technique to achieve accurate and robust results in fault diagnosis of rotating machinery under complex conditions. However, the problem of information losses is always ignored during the fusion process. To solve above problem, an ensemble convolutional neural network model is proposed for bearing fault diagnosis. The framework of the proposed model contains three convolutional neural network branches: one multi-channel fusion convolutional neural network branch and two 1-D convolutional neural network branches. The former branch extracts the coupling features based on multi-sensor data and the latter two branches extract the inherent features based on single-sensor data, which can collect comprehensive fault information and reduce information losses. Furthermore, the support vector machine ensemble strategy is employed to fuse the results of multiple branches, which can improve the generalization and robustness of the proposed model. The experiments show that the proposed can obtain more effective and robust results than other methods.
Funder
Chinese Academy of Sciences
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献