An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data

Author:

Liu YangORCID,Yan XunshiORCID,Zhang Chen-anORCID,Liu WenORCID

Abstract

Multi-sensor data fusion is a feasible technique to achieve accurate and robust results in fault diagnosis of rotating machinery under complex conditions. However, the problem of information losses is always ignored during the fusion process. To solve above problem, an ensemble convolutional neural network model is proposed for bearing fault diagnosis. The framework of the proposed model contains three convolutional neural network branches: one multi-channel fusion convolutional neural network branch and two 1-D convolutional neural network branches. The former branch extracts the coupling features based on multi-sensor data and the latter two branches extract the inherent features based on single-sensor data, which can collect comprehensive fault information and reduce information losses. Furthermore, the support vector machine ensemble strategy is employed to fuse the results of multiple branches, which can improve the generalization and robustness of the proposed model. The experiments show that the proposed can obtain more effective and robust results than other methods.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3