Abstract
Abstract
The condition of bearings significantly impacts the healthy operation of rotating machinery. However, bearings are prone to failure under a harsh working environment and alternating load. Integrating time-domain, frequency-domain, and multi-sensor data information has been a remarkable way to improve the accuracy and robustness of bearing fault diagnosis. How to combine these pieces of information remains a significant challenge. A novel network architecture called time-frequency multi-sensor fusion network is developed to address this issue. Firstly, a multi-scale feature extraction module based on a one-dimensional convolutional neural network is proposed for extracting multi-scale information from time-domain signals. Secondly, a multi-sensor data fusion strategy based on scaled dot product attention is applied to facilitate feature interaction among multi-sensor data. Thirdly, a time-frequency fusion module is designed to fuse the time-domain and frequency-domain features from multi-sensor. Finally, the effectiveness and superiority of the proposed method are validated on the Paderborn dataset.
Funder
Maoming City Science and Technology Plan Project
the Special Projects in Key Fields of Ordinary Universities in Guangdong Province
the Key Project of Natural Science Foundation of China