Research on Multidomain Fault Diagnosis of Large Wind Turbines under Complex Environment

Author:

Jia Rong1,Ma Fuqi1ORCID,Dang Jian1,Liu Guangyi2,Zhang Huizhi1

Affiliation:

1. Key Laboratory of Smart Energy in Xi’an, Xi’an University of Technology, Xi'an 710048, China

2. GEIRI North America, 250 W Tasman Dr., San Jose, CA 95134, USA

Abstract

Under the complicated environment of large wind turbines, the vibration signal of a wind turbine has the characteristics of coupling and nonlinearity. The traditional feature extraction method for the signal is hard to accurately extract fault information, and there is a serious problem of information redundancy in fault diagnosis. Therefore, this paper proposed a multidomain feature fault diagnosis method based on complex empirical mode decomposition (CEMD) and random forest theory (RF). Firstly, this paper proposes a novel method of complex empirical mode decomposition by using the correlation information between two-dimensional signals and utilizing the idea of ensemble empirical mode decomposition (EEMD) by adding white noise to suppress the problem mode mixing in empirical mode decomposition (EMD). Secondly, the collected vibration signals are decomposed into IMFs by CEMD. Then, calculate 11 time domain characteristic parameters and 13 frequency domain characteristic parameters of the vibration signal, and calculate the energy and energy entropy of each IMF components. Make all the characteristic parameters as the multidomain feature vectors of wind turbines. Finally, the redundant feature vectors are eliminated by the importance of each feature vector which has been calculated, and the feature vectors selected are input to the random forest classifier to achieve the fault diagnosis of large wind turbines. Simulation and experimental results show that this method can effectively extract the fault feature of the signal and achieve the fault diagnosis of wind turbines, which has a higher accuracy of fault diagnosis than the traditional classification methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3