Bearing Fault Diagnosis in the Mixed Domain Based on Crossover-Mutation Chaotic Particle Swarm

Author:

Xu Tongle1ORCID,Ji Junqing1,Kong Xiaojia1,Zou Fanghao1,Wang Wilson2

Affiliation:

1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China

2. Department of Mechanical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada

Abstract

The classification frameworks for fault diagnosis of rolling element bearings in rotating machinery are mostly based on analysis in a single time-frequency domain, where sensitive features are not completely extracted. To solve this problem, a new fault diagnosis technique is proposed in the mixed domain, based on the crossover-mutation chaotic particle swarm optimization support vector machine. Firstly, fault features are generated using techniques in the time domain, the frequency domain, and the time-frequency domain. Secondly, the weighted maximum relevance minimum redundancy (WMRMR) algorithm is adopted to reduce the dimension of the feature set and to establish the representative feature set. Thirdly, a new crossover-mutation strategy is suggested to reduce the local minima in optimization, and an optimization disturbance is added. Finally, the support vector machine is optimized using the improved chaotic particle swarm to improve fault classification diagnosis. The effectiveness of the proposed new bearing fault diagnostic technique is verified by experimental tests under different bearing conditions. Test results showed that the bearing fault classification accuracy of CMCPSO-SVM in the mixed domain was much higher than those in a single feature domain.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3