A Probabilistic Bayesian Parallel Deep Learning Framework for Wind Turbine Bearing Fault Diagnosis

Author:

Meng Liang,Su Yuanhao,Kong Xiaojia,Lan Xiaosheng,Li Yunfeng,Xu Tongle,Ma Jinying

Abstract

The technology of fault diagnosis helps improve the reliability of wind turbines. Difficulties in feature extraction and low confidence in diagnostic results are widespread in the process of deep learning-based fault diagnosis of wind turbine bearings. Therefore, a probabilistic Bayesian parallel deep learning (BayesianPDL) framework is proposed and then achieves fault classification. A parallel deep learning (PDL) framework is proposed to solve the problem of difficult feature extraction of bearing faults. Next, the weights and biases in the PDL framework are converted from deterministic values to probability distributions. In this way, an uncertainty-aware method is explored to achieve reliable machine fault diagnosis. Taking the fault signal of the gearbox output shaft bearing of a wind turbine generator in a wind farm as an example, the diagnostic accuracy of the proposed method can reach 99.14%, and the confidence in diagnostic results is higher than other comparison methods. Experimental results show that the BayesianPDL framework has unique advantages in the fault diagnosis of wind turbine bearings.

Funder

Natural Science Foundation of Shandong

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3