Affiliation:
1. School of Mechanical Engineering, Xinjiang University, Urumqi 830046, China
Abstract
The fault diagnosis of rolling bearings is faced with the problem of a lack of fault data. Currently, fault diagnosis based on traditional convolutional neural networks decreases the diagnosis rate. In this paper, the developed adaptive residual shrinkage network model is combined with transfer learning to solve the above problems. The model is trained on the Case Western Reserve dataset, and then the trained model is migrated to a small-sample dataset with a scaled-down sample size and the Jiangnan University bearing dataset to conduct the experiments. The experimental results show that the proposed method can efficiently learn from small-sample datasets, improving the accuracy of the fault diagnosis of bearings under variable loads and variable speeds. The adaptive parameter-rectified linear unit is utilized to adapt the nonlinear transformation. When rolling bearings are in operation, noise production is inevitable. In this paper, soft thresholding and an attention mechanism are added to the model, which can effectively process vibration signals with strong noise. In this paper, the real noise is simulated by adding Gaussian white noise in migration task experiments on small-sample datasets. The experimental results show that the algorithm has noise resistance.
Funder
Fundamental Research Funds for Universities in Xinjiang Uygur Autonomous Region