New Fault Diagnosis Method for Rolling Bearings Based on Improved Residual Shrinkage Network Combined with Transfer Learning

Author:

Sun Tieyang1,Gao Jianxiong1ORCID

Affiliation:

1. School of Mechanical Engineering, Xinjiang University, Urumqi 830046, China

Abstract

The fault diagnosis of rolling bearings is faced with the problem of a lack of fault data. Currently, fault diagnosis based on traditional convolutional neural networks decreases the diagnosis rate. In this paper, the developed adaptive residual shrinkage network model is combined with transfer learning to solve the above problems. The model is trained on the Case Western Reserve dataset, and then the trained model is migrated to a small-sample dataset with a scaled-down sample size and the Jiangnan University bearing dataset to conduct the experiments. The experimental results show that the proposed method can efficiently learn from small-sample datasets, improving the accuracy of the fault diagnosis of bearings under variable loads and variable speeds. The adaptive parameter-rectified linear unit is utilized to adapt the nonlinear transformation. When rolling bearings are in operation, noise production is inevitable. In this paper, soft thresholding and an attention mechanism are added to the model, which can effectively process vibration signals with strong noise. In this paper, the real noise is simulated by adding Gaussian white noise in migration task experiments on small-sample datasets. The experimental results show that the algorithm has noise resistance.

Funder

Fundamental Research Funds for Universities in Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3