A fault diagnosis method for rolling bearings of wind turbine generators based on MCGAN data enhancement

Author:

Jia Zhiyuan,Yu Baojun

Abstract

AbstractIn view of the problems such as poor diagnostic capability and generalization ability of wind turbine generator bearing fault diagnosis methods caused by complex wind turbine generator bearing conditions and few fault samples under actual operating conditions, a wind turbine generator bearing vibration signal data enhancement method based on improved multiple fully convolutional generative adversarial neural networks (MCGAN) was proposed. Firstly, two-dimensional time-frequency features are extracted from the raw data using a Short-Time Fourier Transform (STFT). Secondly, by incorporating multiple CGANs of different scales and a hybrid loss function, the original GAN network was enhanced to learn the intrinsic distribution of bearing vibration signals and generate diverse vibration signals with distinct bearing fault characteristics, resulting in an expanded dataset. Finally, a comparative experiment was conducted using real wind turbine generator-bearing data. The results demonstrate that the augmented samples generated by MCGAN contain rolling bearing fault information while maintaining sample distribution and diversity. By utilizing the augmented dataset to train commonly used fault diagnostic classifiers, the diagnostic accuracy for the original vibration signals exceeds 80%, providing a theoretical basis for addressing the scarcity of fault samples in practical engineering scenarios.

Funder

Department of Science and Technology of Jilin Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3