Author:
Tang Mingzhu,Chen Yutao,Wu Huawei,Zhao Qi,Long Wen,Sheng Victor S.,Yi Jiabiao
Abstract
The number of normal samples of wind turbine generators is much larger than the number of fault samples. To solve the problem of imbalanced classification in wind turbine generator fault detection, a cost-sensitive extremely randomized trees (CS-ERT) algorithm is proposed in this paper, in which the cost-sensitive learning method is introduced into an extremely randomized trees (ERT) algorithm. Based on the classification misclassification cost and class distribution, the misclassification cost gain (MCG) is proposed as the score measure of the CS-ERT model growth process to improve the classification accuracy of minority classes. The Hilbert-Schmidt independence criterion lasso (HSICLasso) feature selection method is used to select strongly correlated non-redundant features of doubly-fed wind turbine generators. The effectiveness of the method was verified by experiments on four different failure datasets of wind turbine generators. The experiment results show that average missing detection rate, average misclassification cost and gMean of the improved algorithm better than those of the ERT algorithm. In addition, compared with the CSForest, AdaCost and MetaCost methods, the proposed method has better real-time fault detection performance.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献