A 2DCNN-RF Model for Offshore Wind Turbine High-Speed Bearing-Fault Diagnosis under Noisy Environment

Author:

Yang Shujie,Yang Peikun,Yu Hao,Bai Jing,Feng Wuwei,Su Yuxiang,Si Yulin

Abstract

The vibration signals for offshore wind-turbine high-speed bearings are often contaminated with noises due to complex environmental and structural loads, which increase the difficulty of fault detection and diagnosis. In view of this problem, we propose a fault-diagnosis strategy with good noise immunity in this paper by integrating the two-dimensional convolutional neural network (2DCNN) with random forest (RF), which is supposed to utilize both CNN’s automatic feature-extraction capability and the robust discrimination performance of RF classifiers. More specifically, the raw 1D time-domain bearing-vibration signals are transformed into 2D grayscale images at first, which are then fed to the 2DCNN-RF model for fault diagnosis. At the same time, three procedures, including exponential linear unit (ELU), batch normalization (BN), and dropout, are introduced in the model to improve feature-extraction performance and the noise immune capability. In addition, when the 2DCNN feature extractor is trained, the obtained feature vectors are passed to the RF classifier to improve the classification accuracy and generalization ability of the model. The experimental results show that the diagnostic accuracy of the 2DCNN-RF model could achieve 99.548% on the CWRU high-speed bearing dataset, which outperforms the standard CNN and other standard machine-learning and deep-learning algorithms. Furthermore, when the vibration signals are polluted with noises, the 2DCNN-RF model, without retraining the model or any denoising process, still achieves satisfying performance with higher accuracy than the other methods.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3