Decentralized Reinforcement Learning Approach for Microgrid Energy Management in Stochastic Environment

Author:

Darshi Razieh1ORCID,Shamaghdari Saeed1ORCID,Jalali Aliakbar1ORCID,Arasteh Hamidreza2ORCID

Affiliation:

1. School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

2. Power Systems Operation and Planning Research Department, Niroo Research Institute, Tehran, Iran

Abstract

Microgrids are considered to be smart power grids that can integrate Distributed Energy Resources (DERs) in the main grid cleanly and reliably. Due to the random and unpredictable nature of Renewable Energy Sources (RESs) and electricity demand, designing a control system for microgrid energy management is a complex task. In addition, the policies of microgrid agents are changing over time to improve their expected profits. Therefore, the problem is stochastic and the policies of the agents are not stationary and deterministic. This paper proposes a fully decentralized multiagent Energy Management System (EMS) for microgrids using the reinforcement learning and stochastic game. The microgrid agents, comprising customers, and DERs are considered as intelligent and autonomous decision makers. The proposed method solves a distributed optimization problem for each self-interested decision maker. Interactions between the decision makers and the environment during the learning phase lead the system to converge to the optimal equilibrium point in which the benefits of all the agents are maximized. Simulation studies using a real dataset demonstrate the effectiveness of the proposed method for the hourly energy management of microgrids.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3