Using Stochastic Dual Dynamic Programming to Solve the Multi-Stage Energy Management Problem in Microgrids

Author:

Tabares Alejandra1ORCID,Cortés Pablo1

Affiliation:

1. Departamento de Ingeniería Industrial, Facultad de Ingeniería, Universidad de los Andes, Cr 1 Este No. 19A-40, Bogotá 111711, Colombia

Abstract

In recent years, the adoption of renewable energy sources has significantly increased due to their numerous advantages, which include environmental sustainability and economic viability. However, the management of electric microgrids presents complex challenges, particularly in the orchestration of energy production and consumption under the uncertainty of fluctuating meteorological conditions. This study aims to enhance decision-making processes within energy management systems specifically designed for microgrids that are interconnected with primary grids, addressing the stochastic and dynamic nature of energy generation and consumption patterns among microgrid users. The research incorporates stochastic models for energy pricing in transactions with the main grid and probabilistic representations of energy generation and demand. This comprehensive methodology allows for an accurate depiction of the volatile dynamics prevalent in the energy markets, which are critical in influencing microgrid operational performance. The application of the Stochastic Dual Dynamic Programming (SDDP) algorithm within a multi-stage adaptive framework for microgrids is evaluated for its effectiveness compared to deterministic approaches. The SDDP algorithm is utilized to develop robust strategies for managing the energy requirements of 1, 2, and 12 prosumers over a 24 h planning horizon. A comparative analysis against the precise solutions obtained from dynamic programming via Monte Carlo simulations indicates a strong congruence between the strategies proposed by the SDDP algorithm and the optimal solutions. The results provide significant insights into the optimization of energy management systems in microgrid settings, emphasizing improvements in operational performance and cost reduction.

Funder

FAPA

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3