Research on Energy Management in Hydrogen–Electric Coupled Microgrids Based on Deep Reinforcement Learning

Author:

Shi Tao12ORCID,Zhou Hangyu1,Shi Tianyu1,Zhang Minghui1

Affiliation:

1. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. Institute of Advanced Technology for Carbon Neutrality, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

Hydrogen energy represents an ideal medium for energy storage. By integrating hydrogen power conversion, utilization, and storage technologies with distributed wind and photovoltaic power generation techniques, it is possible to achieve complementary utilization and synergistic operation of multiple energy sources in the form of microgrids. However, the diverse operational mechanisms, varying capacities, and distinct forms of distributed energy sources within hydrogen-coupled microgrids complicate their operational conditions, making fine-tuned scheduling management and economic operation challenging. In response, this paper proposes an energy management method for hydrogen-coupled microgrids based on the deep deterministic policy gradient (DDPG). This method leverages predictive information on photovoltaic power generation, load power, and other factors to simulate energy management strategies for hydrogen-coupled microgrids using deep neural networks and obtains the optimal strategy through reinforcement learning, ultimately achieving optimized operation of hydrogen-coupled microgrids under complex conditions and uncertainties. The paper includes analysis using typical case studies and compares the optimization effects of the deep deterministic policy gradient and deep Q networks, validating the effectiveness and robustness of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Ningxia Province in China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3