Twin-Delayed Deep Deterministic Policy Gradient Algorithm to Control a Boost Converter in a DC Microgrid

Author:

Muktiadji Rifqi Firmansyah1ORCID,Ramli Makbul A. M.1,Milyani Ahmad H.12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Center of Research Excellence in Renewable Energy and Power Systems, K.A.CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

A stable output voltage of a boost converter is vital for the appropriate functioning of connected devices and loads in a DC microgrid. Variations in load demands and source uncertainties can damage equipment and disrupt operations. In this study, a modified twin-delayed deep deterministic policy gradient (TD3) algorithm is proposed to regulate the output voltage of a boost converter in a DC microgrid. TD3 optimizes PI controller gains, which ensure system stability by employing a non-negative, fully connected layer. To achieve optimal gains, multi-deep reinforcement learning agents are trained. The agents utilize the error signal to obtain the desired output voltage. Furthermore, a new reward function used in the TD3 algorithm is introduced. The proposed controller is tested under load variations and input voltage uncertainties. Simulation and experimental results demonstrate that TD3 outperforms PSO, GA, and the conventional PI. TD3 exhibits less steady-state error, reduced overshoots, fast response times, fast recovery times, and a small voltage deviation. These findings confirm TD3’s superiority and its potential application in DC microgrid voltage control. It can be used by engineers and researchers to design DC microgrids.

Funder

State University of Surabaya

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3