Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator

Author:

Guo H B1,Li H R1

Affiliation:

1. Department of Mechanical Engineering and Automation, School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China

Abstract

This article presents the explicit compact closed-form dynamic equations in the task-space by applying the combination of the Newton—Euler method with the Lagrange formulation including the dynamics of the legs for the Stewart platform manipulator. The kinematics analysis of the manipulator is given and the velocity and the acceleration formulae needed to derive the dynamic equations are also derived. The driving forces acting on the legs are determined according to the dynamic formulation. The formulation has been implemented in routines and has been used for studying a few inverse dynamic problems of a specific Stewart platform manipulator. Simulation results reveal the effect of the leg inertia and that of its parts, respectively, on the dynamics of the complete system, and numerical examples show the effectiveness of the proposed method and the dynamic equations of the Stewart platform manipulator.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3