Affiliation:
1. Department of Mechanical Engineering and Automation, School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
Abstract
This article presents the explicit compact closed-form dynamic equations in the task-space by applying the combination of the Newton—Euler method with the Lagrange formulation including the dynamics of the legs for the Stewart platform manipulator. The kinematics analysis of the manipulator is given and the velocity and the acceleration formulae needed to derive the dynamic equations are also derived. The driving forces acting on the legs are determined according to the dynamic formulation. The formulation has been implemented in routines and has been used for studying a few inverse dynamic problems of a specific Stewart platform manipulator. Simulation results reveal the effect of the leg inertia and that of its parts, respectively, on the dynamics of the complete system, and numerical examples show the effectiveness of the proposed method and the dynamic equations of the Stewart platform manipulator.
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献