Optimization of dynamic parameter design of Stewart platform with Particle Swarm Optimization (PSO) algorithm

Author:

Shahbazi Masood1ORCID,Heidari Mohammadreza2,Ahmadzadeh Milad3

Affiliation:

1. Department of Mechanical Engineering, Razi University, Kermanshah, Iran

2. Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran

3. Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Today motion simulators are being produced rely on electric actuators. The conventional way of dealing with high velocity, accelerations, and bulky payload is using a bigger actuator, but this leads to increased power usage and costs. To overcome these limitations, an optimized design of the Stewart platform design parameter improves simulators’ ability to support the weight of the equipment and satisfy the desired velocity and acceleration. However, it is challenging to set platform design parameters to maintain efficiency across the entire workspace. In this article, the kinematics and dynamics of the six-axis general Stewart robot are explored. A high-rated desired velocity and acceleration for the Stewart platform are defined and simulated. Then, the electric actuator force during some motion trajectory based on the defined workspace, velocity, and acceleration are calculated. Particle Swarm Optimization (PSO) is employed to optimize platform design parameters. The algorithm defines a cost function to minimize the maximum speed and maximum Force of the actuator by examining the structural kinematics arrangement of design parameters. Findings demonstrate that optimized design parameters have been successful in reducing the maximum actuator power 88.3%. Additionally, improves Stewart platform mechanical components’ life. These procedures can be employed for any Stewart platform.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3