Dynamic model of the UC San Diego NHERI six‐degree‐of‐freedom large high‐performance outdoor shake table

Author:

Lai Chin‐Ta1ORCID,Conte Joel P.1ORCID

Affiliation:

1. Department of Structural Engineering University of California San Diego USA

Abstract

AbstractThe UC San Diego large high‐performance outdoor shake table (LHPOST), which was commissioned on October 1, 2004 as a shared‐use experimental facility of the National Science Foundation (NSF) Network for Earthquake Engineering Simulation (NEES) program, was upgraded from its original one degree‐of‐freedom (LHPOST) to a six‐degree‐of‐freedom configuration (LHPOST6) between October 2019 and April 2022. A mechanics‐based numerical model of the LHPOST6 able to capture the dynamics of the upgraded 6‐DOF shake table system under bare table condition is presented in this paper. The model includes: (i) a rigid body kinematic model that relates the platen motion to the motions of the components attached to the platen, (ii) a hydraulic dynamic model that calculates the hydraulic actuator forces based on all fourth‐stage servovalve spool positions, (iii) a hold‐down strut model that determines the pull‐down forces produced by the three hold‐down struts, (iv) Bouc‐Wen models utilized to represent the dissipative forces in the shake table system, and (v) a rigid body dynamic model borrowed from robotic analysis governing the translational and rotational motions of the platen subjected to the forces from the various components attached to the platen. Extensive validation against experimental data shows excellent agreement for tri‐axial and six‐axial earthquake shake table tests. This validated model can be coupled with finite element models of test specimens to study the interaction between the shake table system and the specimens, and it offers potential for enhancing motion tracking performance through off‐line controller tuning or advanced control algorithm development.

Funder

National Science Foundation

Publisher

Wiley

Reference37 articles.

1. NHERI@ UC San Diego 6‐DOF large high‐performance outdoor shake table facility;Van Den Einde L;Front Built Environ,2021

2. Statistical reference values for control performance assessment of seismic shake table testing;Chen PC;Earthq Struct,2018

3. Accuracy assessment of shake table device on strong earthquake output;Guo W;Adv Civ Eng,2019

4. Acceleration Tracking Performance of the UCSD-NEES Shake Table

5. KusnerDA RoodJD BurtonGW Signal reproduction fidelity of servohydraulic testing equipment. InProc. 10th World Conf. on Earthquake Engineering(pp.2683‐2688);1992.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3