Toward Effective Robot--Child Tutoring

Author:

Ramachandran Aditi1,Huang Chien-Ming2,Scassellati Brian1

Affiliation:

1. Yale University, New Haven, CT

2. Johns Hopkins University, Baltimore, MD

Abstract

Personalized learning environments have the potential to improve learning outcomes for children in a variety of educational domains, as they can tailor instruction based on the unique learning needs of individuals. Robot tutoring systems can further engage users by leveraging their potential for embodied social interaction and take into account crucial aspects of a learner, such as a student’s motivation in learning. In this article, we demonstrate that motivation in young learners corresponds to observable behaviors when interacting with a robot tutoring system, which, in turn, impact learning outcomes. We first detail a user study involving children interacting one on one with a robot tutoring system over multiple sessions. Based on empirical data, we show that academic motivation stemming from one’s own values or goals as assessed by the Academic Self-Regulation Questionnaire (SRQ-A) correlates to observed suboptimal help-seeking behavior during the initial tutoring session. We then show how an interactive robot that responds intelligently to these observed behaviors in subsequent tutoring sessions can positively impact both student behavior and learning outcomes over time. These results provide empirical evidence for the link between internal motivation, observable behavior, and learning outcomes in the context of robot--child tutoring. We also identified an additional suboptimal behavioral feature within our tutoring environment and demonstrated its relationship to internal factors of motivation, suggesting further opportunities to design robot intervention to enhance learning. We provide insights on the design of robot tutoring systems aimed to deliver effective behavioral intervention during learning interactions for children and present a discussion on the broader challenges currently faced by robot--child tutoring systems.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Child-Robot Interaction in Individual and Group Settings in India;2024 8th International Conference on Robotics and Automation Sciences (ICRAS);2024-06-21

2. Social robots supporting children’s learning and development: Bibliometric and visual analysis;Education and Information Technologies;2023-12-07

3. How Social Robots can Influence Motivation as Motivators in Learning: A Scoping Review;Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments;2023-07-05

4. Social agents as catalysts: Social dynamics in the classroom with book introduction robot;Frontiers in Robotics and AI;2022-11-23

5. Usability Design of Human-Machine Interaction Interface of Child Companion Robot in Wireless Network;Scientific Programming;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3