AHA: An Agile Approach to the Design of Coarse-Grained Reconfigurable Accelerators and Compilers

Author:

Koul Kalhan1ORCID,Melchert Jackson1ORCID,Sreedhar Kavya1ORCID,Truong Leonard1ORCID,Nyengele Gedeon1ORCID,Zhang Keyi1ORCID,Liu Qiaoyi1ORCID,Setter Jeff1ORCID,Chen Po-Han1ORCID,Mei Yuchen1ORCID,Strange Maxwell1ORCID,Daly Ross1ORCID,Donovick Caleb1ORCID,Carsello Alex1ORCID,Kong Taeyoung1ORCID,Feng Kathleen1ORCID,Huff Dillon1ORCID,Nayak Ankita1ORCID,Setaluri Rajsekhar1ORCID,Thomas James1ORCID,Bhagdikar Nikhil1ORCID,Durst David1ORCID,Myers Zachary1ORCID,Tsiskaridze Nestan1ORCID,Richardson Stephen1ORCID,Bahr Rick1ORCID,Fatahalian Kayvon1ORCID,Hanrahan Pat1ORCID,Barrett Clark1ORCID,Horowitz Mark1ORCID,Torng Christopher1ORCID,Kjolstad Fredrik1ORCID,Raina Priyanka1ORCID

Affiliation:

1. Stanford University, Stanford, California, USA

Abstract

With the slowing of Moore’s law, computer architects have turned to domain-specific hardware specialization to continue improving the performance and efficiency of computing systems. However, specialization typically entails significant modifications to the software stack to properly leverage the updated hardware. The lack of a structured approach for updating the compiler and the accelerator in tandem has impeded many attempts to systematize this procedure. We propose a new approach to enable flexible and evolvable domain-specific hardware specialization based on coarse-grained reconfigurable arrays (CGRAs). Our agile methodology employs a combination of new programming languages and formal methods to automatically generate the accelerator hardware and its compiler from a single source of truth. This enables the creation of design-space exploration frameworks that automatically generate accelerator architectures that approach the efficiencies of hand-designed accelerators, with a significantly lower design effort for both hardware and compiler generation. Our current system accelerates dense linear algebra applications but is modular and can be extended to support other domains. Our methodology has the potential to significantly improve the productivity of hardware-software engineering teams and enable quicker customization and deployment of complex accelerator-rich computing systems.

Funder

DSSoC DARPA

Stanford AHA Agile Hardware Center

Affiliates Program, Intel’s Science and Technology Center

Stanford SystemX Alliance

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HierCGRA: A Novel Framework for Large-scale CGRA with Hierarchical Modeling and Automated Design Space Exploration;ACM Transactions on Reconfigurable Technology and Systems;2024-05-10

2. R-Blocks: an Energy-Efficient, Flexible, and Programmable CGRA;ACM Transactions on Reconfigurable Technology and Systems;2024-05-10

3. FDRA: A Framework for a Dynamically Reconfigurable Accelerator Supporting Multi-Level Parallelism;ACM Transactions on Reconfigurable Technology and Systems;2024-01-27

4. A CGRA Front-end Compiler Enabling Extraction of General Control and Dedicated Operators;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22

5. ImageMap: Enabling Efficient Mapping from Image Processing DSL to CGRA;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3