FDRA: A Framework for a Dynamically Reconfigurable Accelerator Supporting Multi-Level Parallelism

Author:

Qiu Yunhui1ORCID,Mao Yiqing1ORCID,Gao Xuchen1ORCID,Chen Sichao1ORCID,Li Jiangnan1ORCID,Yin Wenbo1ORCID,Wang Lingli1ORCID

Affiliation:

1. State Key Laboratory of ASIC and System, Fudan University, China

Abstract

Coarse-grained reconfigurable architectures (CGRAs) have emerged as promising accelerators due to their high flexibility and energy efficiency. However, existing open source works often lack integration of CGRAs with CPU systems and corresponding toolchains. Moreover, there is rare support for the accelerator instruction pipelining to overlap data communication, computation, and configuration across multiple tasks. In this article, we propose FDRA, an open source exploration framework for a heterogeneous system-on-chip (SoC) with a RISC-V processor and a dynamically reconfigurable accelerator (DRA) supporting loop, instruction, and task levels of parallelism. FDRA encompasses parameterized SoC modeling, Verilog generation, source-to-source application code transformation using frontend and DRA compilers, SoC simulation, and FPGA prototyping. FDRA incorporates the extraction of periodic accumulative operators and multi-dimensional linear load/store operators from nested loops. The DRA enables accessing the shared L2 cache with virtual addresses and supports direct memory access with arbitrary start addresses and data lengths. Integrated into the RISC-V Rocket SoC, our DRA achieves a remarkable 55× acceleration for loop kernels and improves energy efficiency by 29×. Compared to state-of-the-art RISC-V vector units, our DRA demonstrates a 2.9× speed improvement and 3.5× greater energy efficiency. In contrast to previous CGRA+RISC-V SoCs, our SoC achieves a minimum speedup of 5.2×.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Agile Deploying Approach for Large-Scale Workloads on CGRA-CPU Architecture;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3